用户名*
E-Mail*
密码*
确认密码*
忘记
忘记密码? 请输入您的电子邮件地址。 您将收到一个链接,并将通过电子邮件创建一个新的密码。
大数据营销的方法流程有哪些?
大数据营销流程:1、采集用户信息;2、大数据分析处理用户信息,对用户进行分类;3、针对不同用户属性执行不同的营销方案。
1.数据采集
数据采集其中分为线上与线下,而在这其中可以分为线下门店数据采集器安装、在特殊场景利用数据采集、利用LBS技术通过地域区分数据与通过线下采集数据来进行线上数据分析对比。
线下门店数据采集与在特殊场景利用数据采集:线下门店数据采集是在指定的门店中安装一个数据采集器,采集到店顾客手机识别码;特殊场景采集数据是利用数据采集器,采集指定区域的手机识别码。
LBS技术通过地域区分数据:LBS通过指定区域、地点来精选数据采集调取。通过铺设的数据采集器来进行实时的数据采集,而通过LBS来进行把所需要区域的数据调取出来,加以利用。
2.数据清洗
原始数据采集上来时往往都是不规则、非结构化的数据,而且数据大量存在重复、缺失、错误等问题。所以需要进行数据清洗也就是数据画像分析,并将清洗的结果传输到分析及运用系统中以供使用。
原始数据中可能携带一些用户隐私相关的数据,在数据清洗时,需要通过标签化、分类化等等方式对这些数据进行处理。
对于非结构化的数据我们也需要通过大数据平台进行数据建模及数据治理等方法将数据转化为结构化数据,这样才能后续统计分析的速度。
3.数据运用
前面二个运用只是基础的环节,最重要的是如何利用数据来达到营销效果。
数据可视化是数据分析及运用环节十分重要的展示窗口,通过这个窗口可以让更多的、各级工种得到数据传递的规律和价值,并使数据在工作决策中起到十分重要的作用。
除了数据可视化,用户画像分析也是重要的营销手段,通过线下数据和线上数据分析,进行精准客户一系列分析会更加了解客户他们的喜好、浏览习惯、是否拥有消费能力等等,根据这些还可以制定出符合精准客户痛点的营销方案,力求营销最大化。【小蜜蜂大数据平台】
1、收集需求,去关键词、网址网页、400电话过座机、APP
2、建立数据模型
3、根据需求模型和大数据库进行匹配,出数据。
这是运营商联通电信大数据营销的方法流程。
首先,大数据营销要解决的首要问题是数据整合汇聚。运营商目前运用大数据实现精准营销的一个重要挑战是数据的碎片化,即信息化系统各自为政。在许多信息化系统中,数据散落在互不连通的数据库中,相应的数据处理技术也存在于不同部门中,如何将这些孤立错位的数据库打通、互联、交换和共享,并且实现技术共享,才能够最大化大数据价值,实现精准营销。
其次,建立系统化的大数据可视化关联分析系统。通过三维表现技术来展示复杂的大数据分析结果,支持多种异构数据源接入包括互联网与运营商本身海量数据外,还可以支持第三方接口数据、文本文件数据、传统数据库(如Oracle、SqlServer、MySQL等)数据、网页数据等数据源;支持数据可视化分析、数据挖掘运算法、预测性分析、语义引擎、高质量的数据管理等。
第三,将大数据交换共享平台和现有的 CRM系统打通。对用户的需求进行细分,促使营销服务要做到精准分析、精准筛选、精准触达等要求。
第四,利用用户的各种社交工具实现精确营销和用户维系,可以利用关联分析等相关技术对用户社交信息进行分析,通过挖掘用户的社交关系、所在群体来提高用户的保有率,实现交叉销售和向上销售,基于社会影响和社交变化对目标用户进行细分,营销人员可识别社交网络中的“头羊”、跟随者以及其他成员,通过定义基于角色的变量,识别目标用户群中最有挖掘潜力的用户。
第五,对用户市场进行细分。这是运营商实现精准化营销的基础,不同于传统的市场划分,精准营销开展的市场细分要求根据用户的消费习惯、需求、行为规律等进行分析研究,然后据此进行市场细分,这就要求必须收集客户的显性和隐性方面的信息数据,利用大数据分析挖掘工具深入分析,绘制完整的用户视图,然后进行深层次的挖掘分析,定位目标市场,才能为运营商精准化营销提供依据。
第六,根据大数据挖掘分析的用户需求信息,进行产品或服务的量身定做。通过大数据精准营销缩短运营商与用户的沟通距离,实现一对一的精准化、个性化营销。营销方式从海量业务广播式推送,过渡到一对一以用户体验为中心的业务精准实施
姓名*
网站
评论*
评论 ( 4 )
大数据营销流程:1、采集用户信息;2、大数据分析处理用户信息,对用户进行分类;3、针对不同用户属性执行不同的营销方案。
1.数据采集
数据采集其中分为线上与线下,而在这其中可以分为线下门店数据采集器安装、在特殊场景利用数据采集、利用LBS技术通过地域区分数据与通过线下采集数据来进行线上数据分析对比。
线下门店数据采集与在特殊场景利用数据采集:线下门店数据采集是在指定的门店中安装一个数据采集器,采集到店顾客手机识别码;特殊场景采集数据是利用数据采集器,采集指定区域的手机识别码。
LBS技术通过地域区分数据:LBS通过指定区域、地点来精选数据采集调取。通过铺设的数据采集器来进行实时的数据采集,而通过LBS来进行把所需要区域的数据调取出来,加以利用。
2.数据清洗
原始数据采集上来时往往都是不规则、非结构化的数据,而且数据大量存在重复、缺失、错误等问题。所以需要进行数据清洗也就是数据画像分析,并将清洗的结果传输到分析及运用系统中以供使用。
原始数据中可能携带一些用户隐私相关的数据,在数据清洗时,需要通过标签化、分类化等等方式对这些数据进行处理。
对于非结构化的数据我们也需要通过大数据平台进行数据建模及数据治理等方法将数据转化为结构化数据,这样才能后续统计分析的速度。
3.数据运用
前面二个运用只是基础的环节,最重要的是如何利用数据来达到营销效果。
数据可视化是数据分析及运用环节十分重要的展示窗口,通过这个窗口可以让更多的、各级工种得到数据传递的规律和价值,并使数据在工作决策中起到十分重要的作用。
除了数据可视化,用户画像分析也是重要的营销手段,通过线下数据和线上数据分析,进行精准客户一系列分析会更加了解客户他们的喜好、浏览习惯、是否拥有消费能力等等,根据这些还可以制定出符合精准客户痛点的营销方案,力求营销最大化。【小蜜蜂大数据平台】
1、收集需求,去关键词、网址网页、400电话过座机、APP
2、建立数据模型
3、根据需求模型和大数据库进行匹配,出数据。
这是运营商联通电信大数据营销的方法流程。
首先,大数据营销要解决的首要问题是数据整合汇聚。运营商目前运用大数据实现精准营销的一个重要挑战是数据的碎片化,即信息化系统各自为政。在许多信息化系统中,数据散落在互不连通的数据库中,相应的数据处理技术也存在于不同部门中,如何将这些孤立错位的数据库打通、互联、交换和共享,并且实现技术共享,才能够最大化大数据价值,实现精准营销。
其次,建立系统化的大数据可视化关联分析系统。通过三维表现技术来展示复杂的大数据分析结果,支持多种异构数据源接入包括互联网与运营商本身海量数据外,还可以支持第三方接口数据、文本文件数据、传统数据库(如Oracle、SqlServer、MySQL等)数据、网页数据等数据源;支持数据可视化分析、数据挖掘运算法、预测性分析、语义引擎、高质量的数据管理等。
第三,将大数据交换共享平台和现有的 CRM系统打通。对用户的需求进行细分,促使营销服务要做到精准分析、精准筛选、精准触达等要求。
第四,利用用户的各种社交工具实现精确营销和用户维系,可以利用关联分析等相关技术对用户社交信息进行分析,通过挖掘用户的社交关系、所在群体来提高用户的保有率,实现交叉销售和向上销售,基于社会影响和社交变化对目标用户进行细分,营销人员可识别社交网络中的“头羊”、跟随者以及其他成员,通过定义基于角色的变量,识别目标用户群中最有挖掘潜力的用户。
第五,对用户市场进行细分。这是运营商实现精准化营销的基础,不同于传统的市场划分,精准营销开展的市场细分要求根据用户的消费习惯、需求、行为规律等进行分析研究,然后据此进行市场细分,这就要求必须收集客户的显性和隐性方面的信息数据,利用大数据分析挖掘工具深入分析,绘制完整的用户视图,然后进行深层次的挖掘分析,定位目标市场,才能为运营商精准化营销提供依据。
第六,根据大数据挖掘分析的用户需求信息,进行产品或服务的量身定做。通过大数据精准营销缩短运营商与用户的沟通距离,实现一对一的精准化、个性化营销。营销方式从海量业务广播式推送,过渡到一对一以用户体验为中心的业务精准实施